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Abstract Using a personal computer (PC) for simple visual
reaction time testing is advantageous because of the rela-
tively low hardware cost, user familiarity, and the relative
ease of software development for specific neurobehavioral
testing protocols. However, general-purpose computers are
not designed with the millisecond-level accuracy of opera-
tion required for such applications. Software that does not
control for the various sources of delay may return reaction
time values that are substantially different from the true
reaction times. We have developed and characterized a
freely available system for PC-based simple visual reaction
time testing that is analogous to the widely used psychomo-
tor vigilance task (PVT). In addition, we have integrated
individualized prediction algorithms for near-real-time neu-
robehavioral performance prediction. We characterized the
precision and accuracy with which the system as a whole
measures reaction times on a wide range of computer hard-
ware configurations, comparing its performance with that of
the “gold standard” PVT-192 device. We showed that the
system is capable of measuring reaction times with an
average delay of less than 10 ms, a margin of error that is
comparable to that of the gold standard. The most critical
aspect of hardware selection is the type of mouse used for

response detection, with gaming mice showing a significant
advantage over standard ones. The software is free to down-
load from http://bhsai.org/downloads/pc-pvt/.
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A review of the current literature concerning reaction time
(RT) testing suggests that achieving the necessary precision
and accuracy in collected data (typically on the order of a
few milliseconds) requires the use of specialized hardware
(see Li, Liang, Kleiner, & Lu, 2010; Ohyanagi & Sengoku,
2010). A commercially available, off-the-shelf (COTS) per-
sonal computer (PC) is an obvious first choice for such a
testing platform, due to its wide availability and relatively
low cost. However, a COTS PC is considered to be an
unreliable device for RT measurements because of its inher-
ent, seemingly uncontrollable, delays. Indeed, computer
monitors, input devices, and software are not designed with
millisecond-level accuracy of operation in mind, primarily
because such time scales are not required, or even notice-
able, in general-purpose computing. Most currently avail-
able monitors refresh their screens at 60–120 Hz, universal
serial bus (USB) keyboards and mice are typically polled at
125 Hz, and additional delays are introduced by the hard-
ware design, operating system (OS), device drivers, and
other background processes. Without any special consider-
ation, these sources of delay may add up to an overall timing
error on the order of 100 ms with substantial variability,
which is unacceptable for most neurobehavioral perfor-
mance studies, in which a small change in RTs may be of
operational or clinical relevance.

The typical solution to this problem has involved the
development of hardware platforms that are dedicated to
the single task of measuring simple visual RT (Dinges &
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Powell, 1985; Li et al., 2010; Repperger, Jacobson, Wal-
broehl, Michel, &Goodyear, 1985; Thorne et al., 2005). Some
of these platforms are standalone, containing their own meth-
ods for stimulus presentation, response detection, and calcu-
lation of the stimulus–response interval via an internal timer.
Others use the PC for certain functions (such as stimulus
presentation), but still provide their own timing mechanisms
that are free from the aforementioned errors. The obvious
disadvantage to this approach is the requirement to design/-
purchase, configure, and maintain additional dedicated hard-
ware for what is otherwise a fairly simple task. All such
devices provide their own methods of recording RT data and
transferring the results to a PC for analysis, but these steps
frequently involve manual data transfer and organization,
procedures that increase the likelihood of data loss or corrup-
tion due to human error. Furthermore, the lack of consistency
among output formats means that additional work is generally
required to convert and arrange the results before analyses can
be performed.

One such standalone device is the PVT-192 (Ambulatory
Monitoring, Inc., Ardsley, NY; Dinges & Powell, 1985),
which is considered the “gold standard” for simple visual
RT testing (the PVT-192 also produces 1000-Hz tones that
are accessible via a headphone jack; this audio capability
was not evaluated, nor will it be described further here). In
an exemplar study, each subject performs 5- or 10-min RT
sessions spaced at predetermined intervals (e.g., every 2 h)
for several days or weeks, where each session consists of 50
to 100 stimulus–response events. The stimulus consists of a
four-digit millisecond counter that appears in the light-
emitting diode (LED) dot-matrix display, and the response
consists of a left or right button press, depending on the
configuration. The time difference between the stimulus
presentation and the response constitute the subject’s RT.
Each RT value is stored in the device and then uploaded to a
PC, where the individual RTs are postprocessed with the
REACT (Ambulatory Monitoring, Inc., Ardsley, NY), or
other commercially available software, into summary statis-
tics, such as the mean RT or the number of lapses (RTs>
500 ms) per session.

We ported the features of the PVT-192 to the PC in order
to realize a number of benefits. First, the PC has an advan-
tage over a custom hardware platform in terms of ease of
use, availability, support, cost, and user familiarity. Second,
the testing and analysis modules can be integrated into a
single package, which allows us to bundle more advanced
analysis tools, such as our real-time individualized perfor-
mance prediction algorithms (Rajaraman, Gribok, Wesens-
ten, Balkin, & Reifman, 2008, 2009). Integrating such
functionality into a specialized hardware system would be
difficult due to a lack of sufficient processing power and
memory. By using the PC, we can update the performance
predictions as soon as the current session is finished, and

these predictions are immediately made available to the
investigators. The software is written in a way that makes
it relatively simple to include other analysis methods in the
package, enabling side-by-side comparison of different
algorithms and summary statistics. Finally, the storage, or-
ganization, and data export tasks are simplified by removing
the need for manual data manipulation and uploading from
the specialized hardware to a computer. The software auto-
matically organizes data into separate folders according to
study name and subject identifiers, which should help min-
imize the potential for data loss, and makes the raw and
processed data available for export in comma-separated
value (CSV) format. In environments where multiple net-
worked computers are used for testing, the PVT sessions and
analysis results can be automatically saved to a shared
network drive, creating a central data repository.

Realization of these benefits depends on the accuracy and
precision with which our PC-PVT software measures RTs.
Because the PVT-192 is a specialized real-time system, it
would be expected that the error in the PC-derived data
would likely be worse. The error of the PVT-192 is claimed
by the manufacturer to be ±1 ms (personal communication;
May 5, 2010). Based on the analysis of the baseline sessions
of sleep-satiated subjects (Rupp, Wesensten, & Balkin,
2012), which showed an intrasubject variability of 29 ms,
we hypothesized that any error of ≤10 ms in the PVT data
would be acceptable and well below the threshold of oper-
ational/clinical significance (Belenky et al., 2003; Van Don-
gen, Maislin, Mullington, & Dinges, 2003). Thus, this was
the benchmark against which our platform was assessed.
Accordingly, we designed a set of experiments to character-
ize and compare the performance of the two systems, with
the ultimate goal of determining whether the PC-PVT plat-
form can be a viable replacement for the PVT-192.

Method

System description

The PC-PVT software consists of two logically separate
applications, the “Manager” and the “Tester.” The Manager
is used by the investigator to create and configure testing
protocols, enter subject information, and view the collected
data and analysis results. The Tester is used by the subject to
perform a 5- or 10-min PVT session.

Our development goal for the Tester was to duplicate the
functionality of the PVT-192 as closely as possible. The
Tester uses a five-digit millisecond counter presented on
the computer screen as the visual stimulus. Instead of the
button press implemented in the PVT-192, a mouse button
click serves as the response. The PVT protocol requires each
stimulus to be delayed by a random period of time (usually
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between 2 and 10 s), which is referred to as the interstimulus
interval (ISI). A response during this period is reported as a
“false start” condition. Failure to respond within 65 s of the
stimulus is reported as a “no-response” condition. After
each valid response, the RT is shown on the screen for
500 ms, the screen is erased, and the execution goes into
the next random ISI. This implementation matches the op-
eration of the PVT-192.

The core component of our testing software is written in
C and requires Microsoft Windows XP or later to run, with
Windows 7 being the preferred OS, due to better support for
modern timing hardware (e.g., the High Precision Event
Timer). To reduce delays in RT measurements, the applica-
tion raises its own priority level to have the OS dedicate as
much of the central processing unit (CPU) time as possible
to the PVT session. The Windows application programming
interface (API) QueryPerformanceCounter function is used
to assign time stamps of submillisecond precision to key
protocol events. The Direct3D API is used to gain access to
hardware video acceleration. This provides the application
with additional control over how and when the stimulus is
presented, and allows it to track the monitor’s refresh cycle
to estimate the time when the stimulus actually appears on
the screen. The raw-input API is used to detect mouse
clicks, which minimizes delays typically associated with
mouse input processing by the OS. Finally, a USB gaming
mouse with support for 1000-Hz scanning frequency is
used, which lowers the error associated with the input hard-
ware from 8 ms (125 Hz default scan frequency) to 1 ms.

At the end of each PVT testing session, RT data are
automatically saved to a subject-specific directory in a
text-based file format. A copy of the data is also saved in
a format used by the PVT-192, making it possible to con-
tinue using existing tools (e.g., REACT software) to analyze
data collected with the PC-PVT. Once all dialog windows
are closed, the application continues running in the back-
ground to execute near-real-time individualized analysis
algorithms on the most recently obtained data. The algo-
rithm output is saved to the same subject-specific directory
as the session data.

The Manager provides a simple graphical user interface for
generating study protocols, exporting data, and visualizing
PVT data and predictions. Upon startup, theManager displays
a menu for creating new protocols and configuring the subject
information within the current study (Fig. 1). In addition, the
investigator may select one or more subjects and export their
PVT data and computed summary statistics as a CSV file for
offline analysis.

Double-clicking a subject ID displays the analysis win-
dow (Fig. 2), which is used to view information for all PVT
sessions taken by that subject and to plot the raw data,
summary statistics, and output of the prediction algorithm.
Currently supported summary statistics include: major and

minor lapses (which are defined in the Analysis window;
see Fig. 2), mean RT, speed, mean of the fastest and slowest
10 % of RTs, and RT divergence (Rajaraman et al., 2012).
This window allows for a quick overview of a given sub-
ject’s performance across time. The bottom panel of Fig. 2
shows a plot of minor lapses (RTs>500 ms), individualized
predictions, and 95 % prediction intervals for a subject who
underwent 85 h of total sleep deprivation. For this example,
the prediction algorithms were executed in a post-hoc fash-
ion on an existing dataset.

Individualized prediction algorithms

The design of PC-PVT provides the means to integrate exist-
ing analysis methods, such as our previously reported indi-
vidualized prediction model (Rajaraman et al., 2008, 2009),
directly into the testing module. Whereas before, these algo-
rithms could only be used in a post-hoc fashion, requiring
substantial manual effort in obtaining and organizing the data,
we can now execute them immediately after the completion of
each PVT session. The software provides the means to access
not only the most recently acquired RTs but also those from all
previous sessions performed by the subject. Once the analysis
is completed, algorithm results are stored on the disk along
with the session data, which allows researchers to track
changes in algorithm output as more data become available.

Our prediction algorithm considers all previously mea-
sured performance data for a given subject to customize the
model parameters (i.e., to learn the subject’s sleep-loss phe-
notype) and predict performance up to 24 h into the future.
Using a Bayesian approach, which combines a priori infor-
mation with the measured performance data, the prediction
algorithm starts customizing the model for the subject as
soon as the first PVT session is completed. As the subject
completes additional test sessions, the algorithm starts re-
ducing the weight assigned to the a priori information (here
obtained from a fixed, group-average prediction model) and
increasing the weight assigned to the measured performance
data, as it customizes the model to the specific subject.

Testing and validation

The goal of our laboratory testing was to determine the extent
to which RTs from the PVT-192 match those produced by the
PC-PVT. Two main factors account for the degradation in the
quality of RT measurements in the PC-PVT. The first relates
to the decreased accuracy in the recorded time stamps for the
stimulus onset and subject response, due to the multitasking
nature of the PC. The second relates to a systematic delay in
response detection introduced by the hardware and/or soft-
ware, which causes a right shift in the RT data. A character-
ization of these sources of error, which ultimately needs to be
accurate to within a few milliseconds, should be devoid of
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potential confounders associated with intra-subject variability,
time-on-task effects (Doran, Van Dongen, & Dinges, 2001),
and performance differences due to changes in the human-
device interface.

To this end, our solution was to use a separate device
capable of detecting the onset of the stimulus and measuring

RT with submillisecond precision. One such device, called
RTbox, was developed at the University of Southern Cal-
ifornia (Los Angeles, CA; Li et al., 2010). The RTbox has a
built-in light sensor that detects changes in brightness (e.g.,
the appearance of the millisecond counter on the PC screen
or the LED dot-matrix display of the PVT-192, indicating

Fig. 2 The Subject Details
window displays session data
and predictions for a single
subject. The Analysis panel (top
left) is used to configure
dependent parameters. The
Sessions panel (top right) lists
each completed PVT session for
the given subject, including the
time stamp, configuration
parameters, and computed
statistics. The Overview/
Prediction panel (bottom)
displays a plot of the currently
selected summary statistics (in
the example shown, minor
lapses, as defined in the
Analysis panel) and outputs
from the prediction algorithm
(in this case, for a 12-h-ahead
prediction). TTT: total
trial time, in seconds

Fig. 1 The main PVT Manager
window displays the current
study name and the list of
subjects defined for the study.
The session information
columns provide an overview
of the progress that each subject
is making through the study
protocol. The buttons below the
Subjects list are enabled when a
subject is selected and allow for
the analysis and export of PVT
data and for the management of
subject parameters (e.g., subject
identification number, left/right
hand preference, etc.)
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the stimulus onset). A simple two-wire circuit is attached to
the response button (left mouse button for the PC, right
button for the PVT-192), such that the circuit is closed at
the exact moment of the button click. The RTbox contains
its own timer, which time-stamps events from the light and
button circuits with an accuracy of 0.1 ms (Li et al., 2010).
The event code and associated time stamp are transmitted
over a USB cable to another PC, which subtracts the time
stamp of the light signal from the time stamp of the button
click to estimate the “true” RT. A human operator is still
required to initiate a response after recognizing the stimulus,
but the absolute RT value is irrelevant. Of relevance is the
difference between the RTs measured by the RTbox (the true
value) and the RTs measured by the device under evaluation
(PVT-192 or PC-PVT).

The testing of the PC-PVT was conducted on six
different computers (four desktops and two laptops),
with production years ranging from 2006 to 2012. We
tested both low- and high-end systems, using graphics
chips from three major manufacturers (NVIDIA,
AMD/ATI, and Intel), to cover the range of hardware
that is likely to be used in actual neurobehavioral per-
formance studies. Since the effects of mouse selection
on response timing have been previously shown to be
significant (Plant, Hammond, & Whitehouse, 2003), two
different mouse types were tested to characterize the
difference between gaming and non-gaming hardware.
The former was Razer Abyssus (Razer USA Ltd., San
Diego, CA), designed specifically to reduce lag in fast-

paced computer games, and the latter consisted of two
standard laser mice from Dell (Round Rock, TX), which
typically accompany new desktops. It should be noted
that with the exception of the mice, none of the other
components were specially selected to reduce the delays
inherent in the PC. Using a cathode ray tube (CRT)
monitor, for example, instead of the liquid crystal dis-
play (LCD), would have likely improved our results due
to known delays in the operation of LCD panels. How-
ever, because CRTs are becoming much less ubiquitous,
such a configuration would not have been representative
of the conditions under which our software is likely to
be used. Table 1 summarizes the hardware and software
configurations for all tested systems, which were all
running Microsoft’s Windows 7 Enterprise OS.

Results

Figure 3 shows a diagram of how the RTbox was connected
to the PVT-192 (A) and each of the PCs (B), creating a
“closed loop,” meaning a testing setup not dependent on
human factors, between the stimulus and the response. A
separate PC (not shown) was used to record the output from
the RTbox via a USB cable.

We conducted three types of experiments in which we
compared the RTBox against (1) the PVT-192, (2) the PC-
PVT with a gaming mouse, and (3) the PC-PVT with a
standard mouse. Each experiment consisted of 25 min of

Table 1 PC configurations used
for testing the PC-PVT

PC = personal computer; CPU =
central processing unit; GPU =
graphics processing unit; OS =
operating system (Windows 7
Enterprise)

PC Year CPU GPU Monitor OS

Dell Dimension 5150 2006 Pentium D 820 Radeon X300 SE Dell 2007FP 64-bit

Dell Dimension 9150 2006 Pentium D 920 Radeon X300 SE Dell 2007FP 64-bit

Dell OptiPlex 745 2007 Core 2 E6600 Radeon X1300 Dell 2007FP 64-bit

Dell OptiPlex 755 2009 Core 2 E8400 Radeon HD 2400 XT Dell 2007FP 64-bit

Dell Precision M4500 2010 Core i5-540 M Quadro FX 880 M Built-in LCD 32-bit

Lenovo X230 2012 Core i5-3360 M Intel HD 4000 Built-in LCD 64-bit

Fig. 3 Diagrams of the connection between the RTbox and the device
being tested. (A) For the PVT-192, a light sensor was attached from the
RTbox to its light-emitting-diode dot-matrix display, and a button
sensor was attached from the RTbox to the response button so that
both would be triggered at exactly the same time. Events from the two

sensors were time-stamped by the RTbox and transmitted via a USB
cable to another PC. (B) Similar connections were established in order
to characterize the PC-PVT. Reaction times recorded by each device
were compared with those derived from the RTbox time stamps

144 Behav Res (2014) 46:140–147



data collection (five sessions of 5 min each) per device,
during which an operator artificially varied the RT from
the fastest possible (~160 ms) to ~2,000 ms, in order to
cover a wide range of outputs. At the end of each experi-
ment, RTs recorded by the RTbox were subtracted from
those recorded by the device being tested. The difference
is a measure of the delay associated with the device relative
to the RTbox. We used Bland–Altman plots to illustrate the
delay and variability of the collected data (Bland & Altman,
1986).

Figure 4 shows Bland–Altman plots for the three experi-
ments with PC-PVT running on the Dell Precision M4500
laptop. The RTs measured by the RTbox were always less
than those recorded by each device, resulting in a positive
difference.

Table 2 shows descriptive statistics for the three experi-
ments and all six desktops and laptops, sorted in ascending
order by the mean delay relative to the RTbox. With the data
obtained from the RTbox taken as the reference (or true) RT,
we observe that all devices exhibited measurement delay,
with the PVT-192 producing the smallest mean and maxi-
mum differences, and the smallest standard deviation. The
PC-PVTwith the gaming mouse on all six PCs produced the
next smallest minimum, mean, and maximum differences,
whereas the PC-PVTwith the two standard mice yielded the
worst performance.

Discussion

The PC-PVT testing results indicate that the hardware
component with the most significant impact on the RT
data quality is the mouse. When a gaming mouse with
the appropriate OS driver was used, all six PCs were
able to measure RTs with an average error of less than
10 ms, which is comparable to the PVT-192. The com-
puter age, processor, memory, OS version (32- or 64-
bit), and video hardware had a negligible impact
(≤4 ms, on average) on the results. In fact, the two
old Dell Dimension desktops performed just as well as
the much newer and more powerful Dell Precision
M4500 laptop. This is not entirely surprising given that
the performance of a PC is typically measured in terms
of work accomplished in a certain unit of time
(throughput), whereas the PC-PVT benefits most from
low latency. Thus, certain hardware components and
device drivers will be inherently better than others, but
this is not a relationship that can be easily deduced
simply by looking at the hardware specifications or
manufacturing date. In the end, the choice of the input
device (i.e., the mouse) is much more significant. With
the mouse being the only component changed between
Experiments 2 and 3, we expect similar results to be

obtained from any system that meets the minimum
system requirements (see PC-PVT User’s Guide), which

Fig. 4 Bland–Altman plots displaying differences in the recorded
reaction times (RTs) between the RTbox (reference) and the device
being tested. Solid lines represent the means of the differences, and
dashed lines represent means ±2 standard deviations (SDs). (A) RTbox
versus PVT-192 (mean=3.4 ms, SD=0.8 ms). (B) RTbox versus PC-
PVT on a Dell Precision M4500 with a gaming mouse (mean=7.8 ms,
SD=1.0 ms). (C) RTbox versus PC-PVT on a Dell Precision M4500
with a standard mouse (mean=35.7 ms, SD=2.6 ms). All three plots
were cropped at 2,000 ms on the horizontal axis
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are based on the minimum requirements for running
MATLAB. Before each test session, the PC-PVT soft-
ware verifies the availability of the required hardware
video acceleration capabilities and terminates the session
with an error if minimum requirements are not met.

The average delay of 7.9 ms for the PC-PVT across
all six PC configurations with the gaming mouse con-
stitutes an error of ~3 %, if one assumes an average RT
of 240 ms (SD=29 ms) in sleep-satiated individuals
(Rupp et al., 2012). This compares to an error of
~1 % with the PVT-192. Thus, for laboratory or clinical
studies, the error associated with our system is similar
to that of the PVT-192 and is significantly smaller than
the intrasubject RT variability of ~29 ms (Rupp,
Wesensten, & Balkin, 2012). Most investigators do not
implement analysis methods based on the entire raw RT
distribution (such as the method described in Rajaraman
et al., 2012), but instead use summary statistics
extracted from the RT distribution, such as the number
of lapses exceeding 500 ms. When these summary sta-
tistics are used, the small relative margin of error asso-
ciated with our system becomes even less relevant.

Of note, the 3.4-ms average delay associated with the
PVT-192 is greater than the manufacturer-stated 1 ms (per-
sonal communication; May 5, 2010). The difference be-
tween our recorded delay and that reported by the
manufacturer could be due to the non-instantaneous nature
of the light detection circuit, or it could reflect the true delay
associated with the PVT-192. Our experimental setup does
not allow us to distinguish one from the other.

Because the USB poll rate difference between gam-
ing and standard mice is only 7 ms, the maximum delay
of 42.9 ms that we found for one of the standard mice
was unexpected. This finding suggests that other hard-
ware design factors can impact the overall data quality.
The additional delay is likely caused either by the click
detection logic inside the mouse itself or the device
driver responsible for reporting mouse events to the
OS. Whatever the cause, non-gaming mice potentially
introduce an unacceptable amount of delay into the

measurements and thus should be avoided. It is worth
noting that the RT variability in standard mice was only
slightly worse than that of the gaming mouse, but this
is device-specific and could be different for other hard-
ware. To be absolutely certain of the timing errors inherent in
any specific hardware/software configuration, this testing pro-
cedure would need to be repeated using the RTbox, or a
similar hardware platform with known characteristics, as the
reference.

Conclusion

We have developed a platform that can be used to
conduct simple visual RT testing on a PC. The results
of a comparison of this platform with the PVT-192, the
current gold standard, revealed only small differences in
the quality of the data (in terms of mean RT offset and
variability) obtained between the two platforms. These
findings indicate that the use of PC-PVT in neurobeha-
vioral performance studies will result in data that are as
reliable as those obtained using the hand-held (PVT-
192) device.

In addition, we established a verification and validation
protocol that can be used to characterize the reliability of
almost any device designed for visual RT data collection.
The use of the RTbox allowed us to test the system compo-
nents in a “closed loop”—that is, a context in which the
results were independent of human operation—and thus to
account for delays introduced only by the stimulus presen-
tation, response detection, and data-processing components.

This platform integrates individualized prediction models
directly into the testing software, allowing the model to learn
the sleep-loss phenotype of each subject in order to customize
and improve the accuracy of predictions. The platform may
eventually be ported to smartphones or other portable devices,
possibly with the help of hardware implementations (e.g., field-
programmable gate arrays) to overcome the limitations in com-
putational power, providing a powerful tool for near-real-time
individualized neurobehavioral performance prediction.

Table 2 Reaction time differen-
ces (in milliseconds) from the
RTbox, sorted by mean time in
ascending order

G=gaming mouse; S1=standard
mouse 1; S2=standard mouse 2

Device # of RTs Min Mean Max SD

PVT-192 211 1.7 3.4 7.6 0.8

Lenovo X230 (G) 211 1.8 5.3 9.1 1.6

Dell Dimension 9150 (G) 208 1.6 7.8 13.4 2.1

Dell Precision M4500 (G) 211 5.4 7.8 10.5 1.0

Dell Dimension 5150 (G) 213 2.9 7.9 15.2 1.9

Dell OptiPlex 745 (G) 214 2.2 9.1 14.0 2.2

Dell OptiPlex 755 (G) 214 4.9 9.3 14.0 1.6

Lenovo X230 (S1) 213 21.8 30.8 38.7 3.1

Dell Precision M4500 (S2) 213 29.4 35.7 42.9 2.6
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Software availability

The PC-PVT software is freely available and can be down-
loaded from http://bhsai.org/downloads/pc-pvt/.
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